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Curves and Surfaces 
 
Many applications of computer graphics require (in addition to simple elements) also the possibility to 
model and display arbitrary surfaces (free-form surfaces). First, due to easier understanding of the 
mathematics used, the principles of free-form curves will be explained. The examined methods can then be 
extended to surfaces easily. 

                  
 

█ Curves 
 
General curves can be defined either by a formula (analytical representation) or by specifying some control 
points, which define the shape of the curve. Since an appropriate analytical formula for a specific curve is 
usually rather difficult to find, control points are used most of the time. 
 
The following properties characterize the different types of curves: 

- interpolating  (curve passes through the control points) versus approximating (control points lie 
close to the curve) 

- degree of continuity at the connection of curve segments  
- global influence (all points influence all curve points) versus local influence (points only influence 

close parts of the curve) 
- axis-dependent representation (rotation of the coordinate system changes the curve) versus axis-

independent representation (rotation of the coordinate system does not change the curve) 
- tendency to damping versus to oscillation at the end points 
- possible forms of curves, limitations, double points, closed curves, etc. 

 
Curves, which are defined by control-points, are called Splines. In the following, some simple but common 
spline-variants will be described. 
 
Cubic Spline-Interpolation 
Given are n+1 control-points pk = (xk, yk, zk), k=0..n. An interpolating curve which consists of cubic 
polynomials between two control points is called a cubic spline. Between control points pk and pk+1 a 
parameter u describes the curve: 
 

Pk(u) = aku3 + bku2 + cku + dk   
where k = 0, 1, 2, …, n−1   and     0 ≤ u ≤ 1 

 
(attention: = ak, bk, ck, dk are vectors). 
 
To calculate the part of a curve between 2 control points, 4 conditions have to be available. If the definition 
at the control points is chosen in a way, that the cubic polynomials at those points are C1-continuous 
(differentiable) as well as C2-continuous (2x differentiable, i.e. same curvature) when connected, such 
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curves are called natural cubic splines. These are obtained by solving a system of 4n equations with 4n 
variables and setting constraints at the two end points, e.g. that the curvature in the beginning and end of the 
curve is zero. Cubic splines have the disadvantage that each control point influences the whole curve, i.e. 
each point has global influence. 
 
Hermite-Interpolation 
A special form of cubic splines is the Hermite-Interpolation. Here, in addition to the control-points pk, also 
the derivations Dpk at the control points are given. The cubic interpolation polynomial Pk(u), 0≤u≤1, 
between points pk and pk+1, can then uniquely be calculated from these 4 elements of determination:  
 

Pk(0) = pk,      Pk(1) = pk+1,      P'k(0) = Dpk,      P'k(1) = Dpk+1        with k = 0,…,n−1 
 
Pk(u) = aku3 + bku2 + cku + dk  can also be written in matrix-form, and also the first derivation of the curve 
P'k(u) = 3aku2 + 2bku + ck . Using this, the determination elements pk, pk+1, Dpk, Dpk+1 can be formulated 
as: 

                    
 
To calculate the coefficients ak, bk, ck, dk in aku3 + bku2 + cku + dk, the matrix must be inverted. The 
resulting matrix is called Hermite-matrix MH: 
 

     
 
 
Bezier-Curves 
Pierre Bezier developed an approximating curve in 1960 at Renault to model and describe car-bodies. In 
these curves so called Bernstein-polynomials (BEZk,n) are used as weighting functions for the control points. 
Every point on the curve is the weighted average of all control-points: 

 
    with  
 
 

E.g., for 4 control-points (thus n=3) we get: 
 

P(u) = (1-u)3.p0 + 3u(1-u)2.p1 + 3u2(1-u).p2 + u3.p3 
 
Properties of Bezier-curves: 

- for n+1 control points, the degree of P(u) is n 
- every control point attracts the curve like a rubber band 
- global influence (weighting function >0 almost everywhere) 
- p0 and pn lie on the curve 
- the tangents in p0 and pn are the connections to the next points  p1 and pn-1 
- the curve lies completely in the convex hull of the control-points (the convex hull is the smallest 

convex polygon, which includes all control-points) 
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Some of these properties can be 
perceived from the form of the 
Bernstein-polynomials BEZk,n: 
 
 
 
 
 
B-Spline-Curves 
The main disadvantage of the Bezier-curves is the global influence of the control points on the whole curve. 
This has two major drawbacks: (1) every change of a control point (insert, move, delete) changes the look of 
the curve in all points of the curve, and (2) the computation time needed for a big set of control points is 
comparatively high. The reason is the weighting-function form. The so called B-Splines are, just as the 
Bezier-Splines, approximating curves, but the Bernstein-polynomials are replaced by the B-spline-
polynomials Bk,d. These limit the number of 
control points, which influence any curve point, 
to d. The computation of Bk,d  is more complex 
and is done recursively. However, to understand 
B-Splines, it is sufficient to look at the form of 
the B-spline polynomials. It can be observed 
that each weighting curve is non-zero only in a 
limited range, so that every control point has 
only limited influence on the B-spline-curve. 
 
One important property of the B-spline weighting functions is the fact, that for every point on the curve their 
sum equals 1. Thus every curve-point is a weighted average of the control points. 
 
 
 
 
 
Examples for B-spline-curves with d=3 (left) and d=4 (right): 
 

       
 
If d=n+1 is chosen, the resulting curve is a Bezier-curve, which means that Bezier-curves are a special case 
of the B-splines. 
The main differences to the Bezier-curves are: 

- local influence of the control points 
- complexity linear in number of control points (instead of quadratic for Bezier-curves) 
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The most important extensions of these so called uniform B-splines are the Non-Uniform Rational B-
Splines, better known as NURBS. They allow a consistent representation of regular geometric objects, too. 
 
Note, moreover, that all described methods for points are valid in two dimensions as well as in three 
dimensions. Basically all these splines describe spatial curves in three-dimensional space. 
 
 

█ Free-Form-Surfaces 
 
Bezier- and B-Spline-Surfaces 
If the Cartesian product is constructed over two arrays of curves, the resulting set of points is a free-form-
surface. This is a natural way of constructing free-form-surfaces. Depending on which curves are involved, 
different types of surfaces are obtained, like Bezier-surfaces from Bezier-curves, B-spline-surfaces from B-
spline-curves, etc. 

 
 
Each pair of parameters (u, v) corresponds to a 
point on the constructed surface. The curves along 
the edges of the surface are of the same type, e.g. in 
the Bezier-surface example they are Bezier-curves. 
The other properties of Bezier-curves also hold for 
the corresponding surfaces. 
 
Similar to the Bezier-surfaces, B-spline-surfaces can be obtained when using B-spline weighting-functions 
in the formula, or NURBS-surfaces with NURBS-curves.  
 
To draw free-form-surfaces, triangle meshes can be constructed from the surfaces which are then rendered 
like B-Reps. Alternatively, ray-casting methods can be used. For this, methods have to be implemented to 
calculate the intersection point between a line and a surface as accurately as possible. 
 
 


